

Availability Intelligence for z/OS & Open Systems

Availability Intelligence

Agenda

• Intros and Overview

- Curtis Ryan, Vice President

Deep Dive on z/OS and Open Systems

- Lee LaFrese, Senior Performance Consultant

We are inspired by creating intelligence that illuminates the risks hiding inside your IT infrastructure.

-Availability Intelligence

Availability Intelligence for IT Infrastructure

What?

Foreknowledge about hidden threats to availability

• Why?

To better protect continuous availability at primary site by 1. Avoiding Incidents (Make More Predictable) 2. Accelerating the Resolution (Reduce MTTR)

• How?

Use built-in **expert domain knowledge** in automatic analysis of the performance and configuration data

Reporting Vs. Analytics Vs. Intelligence

Data + Analytics ≠ Intelligence

	Reporting	Analytics	Availability Intelligence			
Primary Method	Data Visualization	Statistical Analysis	Infrastructure Knowledge			
Shows	Tables, Graphs, etc.	Anomalies, Correlations	Interpretation of Good and Bad			
What Answers From the Data	What is it?	What Patterns?	What Does it Mean?			

Availability Intelligence for z/OS Disk & Systems

Avoid Issues & Accelerate Fixes for all Major z/OS Disk & Systems Areas

Availability Intelligence

Availability Intelligence for z/OS Tape and Virtual Tape

Avoid Issues & Accelerate Fixes for All Major Tape Areas

Host Activity Tape System Cache • Systems/Jobs/Programs Throttling Volume Groups Balance • Device Groups • etc • etc **Front End** Replication • Throughput • Send/Receive • Virtual Devices/Mounts • Grid Transfers/queues • Balance Balance • etc • etc Trending **Back End** Selected Statistics • Pools Summarized Hourly Migration/Recall/Reclaim Summarized Daily Balance • etc • etc

Availability Intelligence

IntelliMagic

Availability Intelligence for Open Systems Storage & Fabric

Avoid Issues & Accelerate Fixes for all Major SAN Storage & Fabric Areas

SAN Storage

- DSS Health
- Replication Health
- etc

Groups & Clusters

- Volumes Groups
- Cluster Health
- etc

Tier Dashboards

- DSS Tier
- RAID Group Tier
- Disk Drive Tier
- etc

Brocade/Cisco Fabric

- DSS Port Errors
- Switch Port Error
- etc

SVC Dashboards

- Front end
- Back end
- Nodes
- Ports
- etc

Trending

- Selected Statistics
- Summarized Hourly
- Summarized Daily
- etc

Typical Customer Priorities

IntelliMagic

Key Capabilities to be Discussed

Greater Visibility

- Into storage and fabric performance, usage, availability
- Ingest a ton of data from large storage and fabric infrastructure, analyze it and present it in a single-pane-of glass that can be easily understood and drilled down for insight

Early Warning to Protect Availability

- Proactively identify hot spots and risks in the infrastructure

Easy Troubleshooting

Accelerate problem resolution with **quick and intuitive** drill down of issues

IntelliMagic Vision for z/OS and SAN

Lee LaFrese Senior Consultant, Americas <u>lee.lafrese@intellimagic.com</u> +1-214-432-7920 x718

IntelliMagic Solutions

- z/OS Storage and Systems
 - IntelliMagic Vision for z/OS
 - Covers entire z/OS infrastructure
 - IntelliMagic Direction Service for z/OS
 - What-if performance modeling of z/OS storage
- Open Systems Storage and Fabric
 - IntelliMagic Vision for SAN
 - Covers distributed storage and switches
 - Applicable to **z/VM, zLinux**, Windows, AIX, VMWare, etc.
 - IntelliMagic Direction Services for SAN
 - What-if performance modeling of SAN storage

0 0 0 0

IntelliMagic Vision for z/OS Architecture and Design Overview

Covers Entire z/OS Infrastructure

- Storage Systems (74.1, 74.5, 74.8, 78.3)
- Replication: GDPS GM, EMC SRDF/A, XRC (105, 206, 42.11)
- Host channels (73), FICON Director (74.7)
- Processors
 - CEC, LPARs (70, 72, 113)
 - WLM goals (72)
 - Paging (75)
- Coupling Facility (74.4)
- XCF (74.2)

- Tape and Virtual Tape (SMF 14,15,21,30, IBM BVIR, Oracle StorageTek)
- Job records (SMF 30) and Dataset records (SMF 42).
- Supports all z/OS mainframe disk storage (EMC, IBM, HDS, HP)

Note: Not all features listed are included in every license

Solution Architecture Overview – z/OS

IntelliMagic Vision as a Service

Combine RMF Data

IntelliMagic Vision filters and enriches RMF data for data mining:

- Align native z/OS and external data
 - E.g. 74.1 device and 74.5 cache counters
- Eliminate redundant data across z/OS images
 - For each system there is unique as well as duplicate data
 - No easy way to `sum' data from multiple systems
- **Supplement** with external data
 - Sometimes needed to get the complete picture
 - e.g. EMC SQ Mirror, DCOLLECT

0 0 0 0

IntelliMagic Vision for SAN Architecture and Design Overview

IntelliMagic Vision for SAN Logical Architecture

IntelliMagic

IntelliMagic Vision as a Service Architecture

0 0 0 0

How IntelliMagic Vision Provides Availability Intelligence

Detect Risks

- Health rules are applied to enriched RMF data (z/OS) or data collected directly from storage and switches (SAN)
- This results in **Ratings** that show risk levels

- Green = Healthy Yellow = Early Warning Resource getting busier, availability risk to application Red = Exception Busy or slow resource, impact to application
- This process is applied to 100s of metrics, with many thousands of data points across every collection interval!

Dashboards - Visualizing Key Risk Indicators

Disk Storage Systems

Knowledge-Rated Performance Reports

Reports for key metrics are rated according to adaptive thresholds defined per platform, providing pro-active warning of potential performance issues.

Multi-level Thresholds

Availability Intelligence

Dynamic Workload-Based Thresholds

Other thresholds, like those for Front-end Read Response time are based upon the capabilities of the controller, activity and workload.

0 0 0 0

Predictive Modeling with IntelliMagic Direction Services

Why is Modeling Important?

- Support Storage Decisions
 - Add, Replace or Repurpose Disk Systems
 - Add Drives or Adapters
 - Increase Cache
 - Implement Automated or Manual Tiering
 - Deploy Replication
- Storage Capacity Planning
 - Evaluate Workload Growth
 - Examine Workload Changes
 - Anticipate Bottlenecks
- Vendor Performance Comparisons

📴 2015/06/29 18:40 - IBM-AZX61 - After reading .dmc 🛛 🔀						
General Interfaces zSeries Disk zSeries Workload						
Name	IBM-AZX61					
Hardware Type	IBM DS8870 (16-core)					
Manufacturor	EMC DMX 4 FICON					
Manufacturer	IEMC DMX 800 FICUN					
System Memory (GiB)	EMC VMAX 40K FICON					
-,,(,	HDS 7690					
Persistent Memory (GiB)	HDS 7650					
	HDS 7700					
Number of zSeries LCUs	1 Parallel Access Volumes 🔽					
Vescription						
Model for IBM-AZX61 analyze step.						
Measurement data provided at DSS granularity.						
· · · · · · · · · · · · · · · · · · ·						
	v					
,	_					
Easy Tier Settings <u>H</u> ardware Details						
History Solve Base Heport Graph Help						

IntelliMagic Direction: Process

- Collect Data: Input performance data from a representative interval as well as the current storage configuration to IntelliMagic *Direction*. IntelliMagic *Vision* can help you automate this process.
- **2. Baseline:** IntelliMagic *Direction* will estimate unknown parameters to be consistent with the data provided
- **3. Model Configuration Changes:** Solve model for various "what if" scenarios as desired to see the effect of configuration options on performance expectations
- **4. Model Growth:** Produce graphs showing performance as a function of I/O growth for targeted configuration(s)
- **5. Review and Repeat:** Sanity check results and repeat as needed for other systems, intervals or configuration options

IntelliMagic Direction Modeling Example

- Example Workload
 - Peak Throughput Interval 1:00AM July 21st
- Example Scenario: What would the impact to performance be if a DS8870 configuration was changed to a smaller/cheaper option
 - From 16 core to 8 core (lower cost)
 - From 300GB drives to 600GB drives (600GB = less floor space, less power)
- Impact on current performance
- Impact of future I/O growth

Impact on Current Performance of Changing Configuration

Projected Performance with I/O Growth

IntelliMagic

Resource Utilization Projections

Utilization Overview (zSeries)																			
16-way (IBM-00001)			Total I/O F	Rate (I/Os p	per second)														
	Amber	Red																	
Utilizations	Threshol	Threshol																	
	d	d	51000	81000	106000	111000	1,6000	121000	126000	131000	136000	141000	146000	151000	156000	161000	166000	171000	176000
Average SMP	60%	80%	28.8%	45.7%	59.2%	62.7%	5.5%	68.3%	71.1%	73.9%	76.7%	79.6%	82.4%	5.2%	88.0%	90.8%	93.7%	96.5%	99.3%
Average Bus	70%	90%	27.2%	43.1%	56.4%	59.1%	61.7%	64.4%	67.1%	69.7%	72.4%	75.0%	77.7%	80.3%	83.0%	85.7%	88.3%	91.0%	93.6%
Average Logical Device	n/a	n/a	0.9%	1.4%	1.8%	1.9%	1.9%	2.0%	2.1%	2.2%	2.3%	2.4%	2.5%	2.5%	2.6%	2.7%	2.8%	2.9%	3.0%
Highest DA	60%	80%	14.9%	23.6%	30.9%	32.3%	33.8%	35.2%	36.7%	38.1%	39.6%	41.0%	42.5%	44.0%	45.4%	46.9%	48.3%	49.8%	51.2%
Highest HDD (FC/SAS)	60%	80%	3.9%	6.1%	8.0%	8.4%	8.8%	9.1%	9.5%	9.9%	10.3%	10.6%	11.0%	11.4%	11.8%	12.2%	12.5%	12.9%	13.3%
Average FICON HA	50%	70%	18.4%	29.2%	38.3%	40.1%	41.9%	43.7%	45.5%	47.3%	49.1%	50.9%	52.7%	54.5%	56.3%	58.1%	59.9%	61.7%	63.5%
Highest FICON Port	50%	70%	3.6%	5.7%	7.4%	7.8%	8.1%	8.5%	8.9%	9.2%	9.6%	9.9%	10.3%	10.6%	11.0%	11.3%	11.7%	12.0%	12.4%
Average Fibre HA	60%	80%	22.7%	36.0%	47.0%	49.3%	51.5%	53.7%	55.9%	58.1%	60.3%	62.5%	64.8%	67.0%	69.2%	71.4%	73.6%	75.8%	78.1%
Average PPRC Link	60%	80%	16.5%	26.2%	34.2%	35.9%	37.5%	39.1%	40.7%	42.3%	43.9%	45.5%	47.2%	48.8%	50.4%	52.0%	53.6%	55.2%	56.8%
Utilization Overview (zSeries)																			
8-way, 600 GB HDDs (IBM-00001 re	placement)	Total I/O F	Rate (I/Os p	per second)														
	Amber	Red																	
Utilizations	Threshol	Threshol																	
	d	d	51000	81000	106000	111000	116000	121000	126000										
Average SMP	60%	80%	39.3%	62.4%	81.6%	85.4%	89.3%	93.1%	96.9%										
Average Bus	70%	90%	27.2%	42.1%	56.4%	59.1%	61.7%	64.4%	67.1%										
Average Logical Device	n/a	n/a	0.9%	1.4%	1.9%	2.0%	2.1%	2.2%	2.2%										
Highest DA	60%	80%	14.9%	23.6%	30.9%	32.3%	33.8%	35.3%	36.7%										
Highest HDD (FC/SAS)	60%	80%	9.7%	15.5%	20.2%	21.2%	22.1%	23.1%	24.0%										
Average FICON HA	50%	70%	18.4%	29.2%	38.3%	40.1%	41.9%	43.7%	45.5%										
Highest FICON Port	50%	70%	3.6%	5.7%	7.4%	7.8%	8.1%	8.5%	8.9%										
Average Fibre HA	60%	80%	22.7%	36.0%	47.0%	49.3%	51.5%	53.7%	55.9%										
Average PPRC Link	60%	80%	16.5%	26.2%	34.2%	35.9%	37.5%	39.1%	40.7%										

0 0 0 0

Sample IntelliMagic Vision Use Cases

0 0 0 0

High Connect Time (z/OS)

IntelliMagic

Availability Intelligence

Disk Storage System Dashboard [rating: 0.01]

for all Disk Storage Systems by Serial

Two days before the issue (January 30), all dashboard indicators were showing acceptable performance

Disk Storage System Dashboard [rating: 0.18] for all Disk Storage Systems by Serial

On January 31st, the Connect Time indicator changed to "yellow" which is an IntelliMagic Vision early warning.

DSS Performance Summary

Charts behind the dashboard indicators

For Serial 'DS32_ZBQ-CLOC3'

IntelliMagic

Availability Intelligence

Disk Storage System Dashboard [rating: 0.41] for all Disk Storage Systems by Serial

The next day, February 1st, showed that the Connect Time was now indicating a performance exception.

DSS Performance Summary

Charts behind the dashboard indicators

For Serial 'DS32_ZBQ-CLOC3'

IntelliMagic

Availability Intelligence

Response Time (ms) [rating: 0.10] For Serial 'DS32_ZBQ-CLOC3'

Connect (ms) [rating: 0.41] For Serial 'DS32_ZBQ-CLOC3'

Availability Intelligence

Connect (ms) (top 30) [rating: 0.88]

For Serial 'DS32_ZBQ-CLOC3' by Volume Label

Connect (ms) (top 30) [rating: 0.78]

For Serial 'DS32_ZBQ-CLOC3' by Volume Label

Response Time (ms) [rating: 0.66]

For Serial 'DS32_ZBQ-CLOC3'

Disk Storage System Dashboard [rating: 0.08] for all Disk Storage Systems by Serial

After the SQL query was fixed, the dashboard indicators returned to "green"

0 0 0 0

SRDF/A Performance (z/OS)

SRDF/A Dashboard [rating: 0.11] for all SRDF/A Sessions by Session

IntelliMagic

Availability Intelligence

Max Cycle Time (sec) [rating: 0.12] For Session '0040'

Asynchronous replication was struggling during some intervals on April 29th

Max Cycle Time (sec) For Session '0040'

IntelliMagic

Max Cycle Size (slots) for all SRDF/A Sessions by Session

SRDF/A drops 0040 1500000 1400000 1300000 1st 1200000 Warning 1100000 1000000 900000 slots 800000 700000 600000 500000 400000 300000 200000 100000 0 511201A 11:15 AM 439/2014 2:45 PM 51212014 Brits AM 4121/21/4 5:45 PM 123/21/4 2:45 PM altanoia Link am 4125/2014 8:45 M 4126/2014 5:45 AM 4127120142:45 M AVZIPOIA 11:45 PM AL28/DIA 8:45 PM a129/2014 5:45 PM ALEORDIA 11:45 PM 41211214 8:45 PM

The trend for this metric was that the spikes kept worsening

HA Writes (tracks) for all SRDF/A Sessions by Serial

Right before the SRDF/A drop, a burst of write activity came from one VMAX

IntelliMagic

Write Pending High Water Mark (slots) for all SRDF/A Sessions by Serial

The high water mark for SRDF/A write pending slots spiked.

FICON Write (MB/s) for all Ports by Serial

0 0 0 0

Drives Overloaded (SAN)

Front-End Dashboard [rating: 2.04] for all Storage Pools by Serial Rating based on DSS Storage Pool data using DSS Thresholds

Response times are generally bad!

SVC Storage Pool Front-End Dashboard [rating: 2.04] For Serial 'V7000-1' by Storage Pool

Rating based on DSS Storage Pool data using DSS Thresholds

Response Times are Primarily Affecting NLSAS_01 Storage Pool

SVC Storage Pool minicharts

Response times are bad on front-end and back-end (stages/destages)

Drive Read Response time (ms) [rating: 2.33] For Serial 'V7000-1' by Drive Tier Rating based on DSS Drives data using DSS Thresholds

Disk response times are only bad for 7.2K 2TB Drives

Drive Read Response time rated by Drive Tier (ms) [rating: 1.98] For Serial 'V7000-1', for Drive Tier '7.2K 2000GB 3.5', for RAID Group ID 'TBIMO0' by Drive Name

Rating based on DSS Drives data using Drive Tier based Thresholds

Focusing on a one RAID Group we see all drives have elevated response time.

V7000 Case Study Summary

Fi	nding	Observations				
1.	Poor front-end response times from 2:00 PM to 5:00 PM due to overloaded 2 TB drives.	1.	Spread the load over additional RAID groups.			

0 0 0 0

IBM DS8000 Overloaded Host Adaptors (SAN)

Disk Storage System Dashboard [rating: 0.61] for all Disk Storage Systems by Serial

Rated dashboard indicates key risk indicators for performance attributes exceeding warning and exception thresholds.

DSS Dashboard Mini-Charts

Drilldown shows rated mini-line charts that help you visualize relationships. Note how throughput, response time, and Read Hit % are correlated.

Throughput and Response Time for all data

IntelliMagic

Response Time (ms) [rating: 0.61] For Serial 'IBM-000'

Response time peaks at 11:00 PM each day.

Fibre Front-End Read Response (ms) [rating: 1.62] for all Ports by Serial

Drive Read Response (ms) [rating: 0.00] For Serial 'IBM-000'

Average back-end response time has lots of peaks but not correlated with front-end response time. Overloaded drives not causing issue.

DS8000 Case Study Conclusion

Finding	Recommendations
HA0000 & HA0001 are saturated during peaks periods.	The solution is simply to redistribute some of the load from HA0000 & HA0001 to HA0003 & HA0004.
Back-end drive write response times peak during same area but there are no FW bypasses so front-end write response time should not be affected by increases in back-end response time.	

0 0 0 0

IntelliMagic